

Programme & Abstracts

5th World Congress on Tattoo and Pigment Research

24 - 26 August 2021

Amsterdam · The Netherlands

www.wctp2021.org

[P5] STUDY OF THE IMPACT OF NATURAL DISCOLORING MEDIA ON BODY TATTOO AND PERMANENT MAKE UP (PMU) COLORANTS

Eleni Andreout

*School of Health and Care Sciences, Laboratory of Dermatology-Aesthetics & Laser Applications (lab LAD) University of West Attica, Athens, Greece

Aim: The aim of this work was the assessment of natural origin discoloring media on the alteration of color intensity of tattoo and PMU colorants.

Methods: Body tattoo and PMU colorants (Table 1a) dispersed in water in concentration 1mg/30ml were incubated with natural origin extracts (Table 1b) in 1/10 (v/v) ratio and incubated at 37°C. A commercial tattoo discoloring product was used as control. The spectra of the colorants dispersed in water and their mixture with the discoloration media was obtained by ultraviolet-visible (UV/Vis) spectrophotometry (UV-1800 UV-Vis Spectrophotometer, SHIMADZU, Kyoto, Japan). The discoloration potential of each media was assessed by calculating the alteration of absorption (A) maximum in the visible range (400 nm – 800 nm) of each colorant before and after incubation with each discoloration media.

Results: The results (Table 2) showed a good discoloration of 810 (85,47%) and 702 (93,18%). Although 712 and 710 have the same colorant composition the performance of the discoloration media differed. This results is an indication of the significance of the presence of other ingredients in the colorant formula.

Conclusions: Natural origin discoloring media may act as efficient alternatives of laser tattoo removal.

	b			
Body tattoo and PMU colorants	Colorant ingredients (CI)	Discoloration media		
DB	Malva infusion			
TI	CI77266	Ivialva infusion		
152	Geranium Infusion			
712 702	CI77891, CI56300, CI56110, CI77266	Geranium initusion		
702	CI77891, CI56300, CI56110, CI 77266	Malva/geranium infusion		
Sunset	CI77891, CI56110, CI77491			
810	CI 77891, CI56300, CI77491, CI77288, CI77499	Agaricus infusion		
810 816	CI 77891, CI77288, CI77499, CI77492, CI77266	Commercial discoloration product		
288	CI 77891, CI77499, CI77491, CI77492			

Table 2. UV absorption of colorant dilutions in water and their mixtures with discoloration media

Colorant	A max (nm)	Ink diluted in water	Ink diluted in water incubated with discoloring media				
			malva	geranium	malva / geranium	Agaricus	Control
DB	566	0.085	0.166	0.108	0.12	0.186	0.176
TI	440	0.167	0.166	0.082	0.085	0.096	0.153
152	780	0.171	0.252	0.073	0.139	0.199	0.402
712	600	0.341	0.708	0.273	1.647	0.853	0.705
702	600	0.425	0.743	0.029	0.421	0.492	0.77
sunset	476	0.422	0.31	0.407	0.314	0.612	0.348
810	800	0.289	0.264	0.042	0.292	0.392	0.481
816	735	0.684	0.839	0.05	0.612	0.771	0.984
288	790	0.1448	0.264	0.042	0.292	0.392	0.481